Towards Neural Network-based Reasoning
نویسندگان
چکیده
We propose Neural Reasoner , a framework for neural network-based reasoning over natural language sentences. Given a question, Neural Reasoner can infer over multiple supporting facts and find an answer to the question in specific forms. Neural Reasoner has 1) a specific interaction-pooling mechanism, allowing it to examine multiple facts, and 2) a deep architecture, allowing it to model the complicated logical relations in reasoning tasks. Assuming no particular structure exists in the question and facts, Neural Reasoner is able to accommodate different types of reasoning and different forms of language expressions. Despite the model complexity, Neural Reasoner can still be trained effectively in an end-to-end manner. Our empirical studies show that Neural Reasoner can outperform existing neural reasoning systems with remarkable margins on two difficult artificial tasks (Positional Reasoning and Path Finding) proposed in [8]. For example, it improves the accuracy on Path Finding(10K) from 33.4% [6] to over 98%.
منابع مشابه
A fuzzy reasoning method based on compensating operation and its application to fuzzy systems
In this paper, we present a new fuzzy reasoning method based on the compensating fuzzy reasoning (CFR). Its basicidea is to obtain a new fuzzy reasoning result by moving and deforming the consequent fuzzy set on the basis of themoving, deformation, and moving-deformation operations between the antecedent fuzzy set and observation information.Experimental results on real-world data sets show tha...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملTowards Bridging the Gap Between Pattern Recognition and Symbolic Representation Within Neural Networks
Underlying symbolic representations are opaque within neural networks that perform pattern recognition. Neural network weights are sub-symbolic, they commonly do not have a direct symbolic correlates. This work shows that by implementing network dynamics differently, during the testing phase instead of the training phase, pattern recognition can be performed using symbolically relevant weights....
متن کاملCompositional Attention Networks for Machine Reasoning
We present the MAC network, a novel fully differentiable neural network architecture, designed to facilitate explicit and expressive reasoning. Drawing inspiration from first principles of computer organization, MAC moves away from monolithic black-box neural architectures towards a design that encourages both transparency and versatility. The model approaches problems by decomposing them into ...
متن کاملA Hybrid Approach to Fault Diagnosis in Network and System Management
In this paper, several Artificial Intelligence (AI) techniques such as Rule-Based Reasoning (RBR), Bayesian Networks (BNs), Neural Networks (NNs), Case-Based Reasoning (CBR), Qualitative Reasoning (QR), and Model-Based Reasoning (MBR) are described. Then an automated management system prototype is presented. Finally, a hybrid approach to automated network and system management is proposed. Howe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1508.05508 شماره
صفحات -
تاریخ انتشار 2015